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The metric dimension problem was first introduced in 1975 by Slater [6], and
independently by Harary and Melter [4] in 1976; however the problem for hy-
percube was studied (and solved asymptotically) much earlier in 1963 by Erdé&s
and Rényi [2]. A set of vertices S resolves a graph G if every vertex is uniquely
determined by its vector of distances to the vertices in S. The metric dimension
of G is the minimum cardinality of a resolving set of G.

An natural analogue for oriented graphs was introduced by Chartrand, Raines,
and Zhang much later in 2000 [1]. Consider an oriented graph D. For a
vertex v and an ordered set W = {wy,ws,...,wi} of vertices, the k-vector
r(v|W) = (d(v,w1),d(v,ws),...,d(v,wy)) is referred to as the (directed) repre-
sentation of v with respect to W, where d(z,y) denotes the directed distance
from z to y. If r(v|W) exists for every vertex v, then the set W is called a re-
solving set for D if every two distinct vertices have distinct representations. A
resolving set of minimum cardinality is called a basis for D and this cardinality
is the (directed) dimension, dim(D), of D. An oriented graph of dimension & is
also called k-dimensional.

Since not every oriented graph has a dimension, one fundamental question
is the necessary and sufficient conditions for dim(D) to be defined; and the
answers are still unknown. Unlike the undirected version, there are not many
results known for directed metric dimension. Characterization of k-dimensional
oriented graphs is only known for k¥ = 1 [1]. Researchers have also studied the
directed metric dimension of tournaments [5] and Cayley digraphs [3].

Let G be a graph with cyclic covering. An orientation on G is called C,, —
simple if all directed C,, in the oriented graph are strong. Here we study metric
dimension of two simply oriented graphs: the wheels and the fans. In addition
we prove a sharp upper bound for the metric dimension for arbitrary strong
oriented graphs, which is an improvement of the bound provided in [1].
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